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Using numerical simulations we investigate dynamical quantum chaos in isolated nuclear spin systems. We
determine the structure of quantum states, investigate the validity of the Curie law for magnetic susceptibility
and find the spectrum of magnetic noise. The spectrum is the same for positive and negative temperatures. The
study is motivated by recent interest in condensed-matter experiments for searches of fundamental parity- and
time-reversal-invariance violations. In these experiments nuclear spins are cooled down to microkelvin tem-
peratures and are completely decoupled from their surroundings. A limitation on statistical sensitivity of the
experiments arises from the magnetic noise.
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I. INTRODUCTION

Much of the present knowledge about violations of the
fundamental symmetries P �invariance under spatial inver-
sion� and T �invariance with respect to time reversal� comes
from experiments measuring P- and T-violating permanent
electric dipole moments �EDM’s� of atoms, molecules, and
the neutron, see, for example, Ref. �1�. Most EDM experi-
ments measure precession of the angular momentum of the
system in an applied electric field analogous to the Larmor
precession in an applied magnetic field.

In addition to such precession experiments, there are
EDM searches of another kind �2,3�, which have drawn re-
cent renewed attention �4–10�. The idea of these experiments
is the following. Suppose that we have some condensed mat-
ter sample with uncompensated spins. If an electric field is
applied to the sample, it interacts with the associated �P- and
T-violating� EDM’s, leading to a slight orientation of the
spins in the direction of the electric field. This orientation, in
turn, is measured by measuring the induced magnetization of
the sample. In this work we concentrate on effects related to
nuclear spins in insulators with fully compensated electron
spins �7,9�. The EDM energy shift under discussion is about
10−24−10−28 eV per nuclear spin. For comparison a similar
shift is created by a magnetic field B�10−16−10−20 T. So the
effect is tiny and limitation to statistical sensitivity comes
from the fact that the number of spins n�1023, in spite of
being large is still finite �9�. Basically the limitation comes
from a kind of magnetic shot noise. In the EDM experiments
the nuclear spins must be cooled down at least to 100 �K
and optimally down to 10–100 nK. At low temperatures the
spins are completely decoupled from the crystal lattice, so
there is no contact with any heat bath. This motivates the
problem considered in the present work: magnetic noise of
an isolated nuclear spin system. An important point is that
the total spin of all nuclei is not conserved because magnetic
dipole-dipole interaction depends on relative orientation of
nuclei.

Concerning previous work we first of all refer to the 1959
paper by Hebel and Slichter �11� where the physical meaning
of temperature for an isolated spin system has been dis-
cussed. This work assumed the validity of a statistical
approach for the isolated quantum system. This is what
nowadays is called dynamical quantum chaos. The problem
of the onset of dynamical quantum chaos has been addressed

much later. Level statistics in a spin system with a mobile
fermion has been investigated by Montambaux et al. in 1993
�12�. The criterion for onset of quantum chaos in spin glass
shards with Heisenberg interaction in a random external
magnetic field has been derived by Georgeot and Shepelyan-
sky in 1998 �13�. There have been also numerical studies of
level statistics in XYZ spin chains with and without a random
magnetic field that demonstrated non-Wigner behavior in the
absence of magnetic field �14�.

II. MODEL

To be specific, we consider the lead titanate ferroelectric
suggested for EDM experiments in Refs. �7,15�. The interac-
tion between the nuclei is governed by the magnetic dipole-
dipole interaction, the strength of which falls off as 1 /r3,
J��=�2����−3n�n�� /r3. Therefore in the paramagnetic
phase that we are interested in it is sufficient to only include
nearest-neighbor interactions. The dominating contribution
to the dipole-dipole interaction is from the 207Pb isotope
which has a natural abundance of 22.1% and are distributed
randomly through the lattice. As a consequence the interac-
tion is anisotropic and random in strength. Therefore we
adopt a model Hamiltonian of the form

H = �
�kl�

�
��

J��
kl Sk�Sl� − B�

k

Skz, �1�

where J��
kl is the interaction between spins S=1/2 on nearest

sites k and l on a lattice and B is a uniform external magnetic
field. The interaction J��

kl is represented by random numbers
uniformly distributed between �−J ,J�. The typical value of J
is J�10−12 eV�10 nK �7�. For the sake of simplicity unless
otherwise is stated we take a usual square lattice with peri-
odic boundary conditions. So, we consider 2D clusters. We
will consider the case when the tensor J�� has only diagonal
components �=� and the case when it has both diagonal and
off diagonal components. The latter case corresponds to real
dipole-dipole interaction. We diagonalize the Hamiltonian
�1� numerically exactly and we need to know all eigenstates
and all eigenenergies, so the size of the matrix is 2n where n
is the number of spins. Therefore, practically we are able to
consider only relatively small clusters with n=8,10,12. For
a sufficiently large lattice all results are expected to be
self-averaged. However, we consider relatively small clus-
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ters, therefore, to improve statistics we average results over
100 random realizations of J��

kl . We do not consider an odd
number of spins to avoid Kramers degeneracy of spectra that
cannot be important in the thermodynamic limit.

III. STRUCTURE OF CHAOTIC EIGENSTATES

A. Small magnetic field

At zero magnetic field the Hamiltonian �1� is invariant
under time reversal �T reversal�. This implies that the eigen-
functions of the Hamiltonian are split in two sectors of dif-
ferent time parity: in the first sector they stay the same ���
and in the second one they change sign ��� under the action
of all the spins being flipped. Therefore the expectation value
of magnetization that is a T-odd operator vanishes for any
state �i	Sz	i�=0. Because of random J, chaos is established in
each of these two sectors but the sectors do not interact.
Anderson localization of single particle states in a random
potential is a well known effect. In principle a spatial local-
ization of many-body quantum states is also possible, while
it is known that interaction tends to destroy Anderson local-
ization �16�. Spatial localization would imply Poisson level
statistics �the distribution of level spacing between closest
levels�, PP�s�=exp�−s�, within a sector with a given T parity
in a sufficiently large system. On the other hand the Wigner-
Dyson distribution PWD�s�= �s

2 exp�−�s2 /4� within a given
sector indicates a full chaotization including delocalization.
To characterize to what degree the statistics of levels are
Wigner or Poisson, following Ref. �13� we use the parameter
	=
0

s0�P�s�− PWD�s��ds
0
s0�PP�s�− PWD�s��ds, where P�s�

are the statistics measured in numerical simulations and s0
=0.4729 is the intersection point of PP�s� and PWD. Local-
ization effects are always enhanced in the 1D case. Therefore
to investigate the localization scenario we studied level sta-
tistics within a given T-parity sector for the Hamiltonian �1�
on a 1D ring at B=0. We found that 	=0.18,0.051,0.035 for
n=8, 10, and 12, respectively. So, we do not observe any
deviation from the Wigner-Dyson distribution within the ac-
cessable system size. Thus, we come to a conclusion that
there is no spatial localization of quantum states in the ran-
dom spin system. This conclusion is similar to that of Ref.
�16� for mobile interacting particles.

The combined statistics of levels including both sectors at
B=0 is given by the sum of two Wigner distributions, giving
an intermediate statistics with 	�0.5, see Fig. 1. A very
small critical magnetic field is needed to mix the sectors and
hence to lead to a single Wigner distribution. The critical
magnetic field Bc1 is given by the condition that mixing of
two nearest states from different sectors is of the order of
unity

Bc1�j−	Sz	i+�

E

� 1. �2�

Here 	i+� and 	j−� are opposite T-parity eigenstates of the
Hamiltonian �1� at zero magnetic field. The level spacing is
roughly equal to 
E�J�n /2n, where the factor �n comes
from the total width of the spectrum that is discussed below.
To estimate a typical mixing matrix element in Eq. �2� we

use the sum rule � j�i+	Sz	j−��j−	Sz	i+�= �i+	Sz
2	i+�= �i+	�mSzm

2

+�m�kSz,mSz,k	i+�� n
4 . Here we take into account that

�mSzm
2 =n /4 and that �m�k→0 because it is incoherent.

There are 2n−1 terms in � j. Therefore the typical mixing ma-
trix element is 	�j−	Sz	i+�	��n /2n+1. Hence substitution in
Eq. �2� gives the following estimate:

Bc1 �
J

�2n−1
. �3�

To confirm this analytical estimate we present in Fig. 1 the
value of 	 calculated numerically for different magnetic
fields. As we already mentioned at zero magnetic field 	
�0.5 indicating intermediate statistics, and at large field 	
→0 indicating the Wigner-Dyson distribution. Taking the
value 	=0.25 as a crossover point we find Bc�n+2� /Bc�n�
�0.5 in good agreement with Eq. �3�. Thus the value of the
first critical field Bc1 drops down exponentially with number
of spins. For the EDM experiment we are interested in large
systems, n�1023. So in this situation Bc1=0. Note that Eq.
�3� is not a criterion for onset of quantum chaos. This is the
criterion for a crossover from a two component chaotic dis-
tribution to a single component chaotic distribution or in
other words the criterion for destruction of T parity. This is
quite similar to the dynamical enhancement of spatial parity
violation in nuclei �17�.

B. “Strong” magnetic field

In a strong uniform magnetic field stationary states can be
classified by total spin projection on the direction of the field
Sz. This regime is realized when the level spacing B is larger
than the matrix element between directly coupled states that
is of the order of J, see, e.g., Ref. �13�. Thus the crossover to
the strong magnetic field regime happens when B�Bc2�J
�10−7 T �the numerical value corresponds to lead titanate�.
In the strong field regime due to random exchange interac-
tion J the states with a given value of Sz are completely
mixed up and their energies, according to our calculations,
are spread within the band of width �0.3�nJ. Note that
“conservation” of total Sz does not mean that the z projection
of a particular spin is conserved. Every particular spin fluc-
tuates very strongly. Thus the energy spectrum consists of
successive bands, separated by B, the width of the band is
about �0.3�nJ. There is the Wigner-Dyson statistics of lev-

FIG. 1. 	 as a function of the magnetic field: Solid line n=8,
dashed line n=10, dotted line n=12.
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els within a given band. When n� �B /J�2 the bands overlap
and this leads to Poisson level statistics.

The above discussion of the structure of quantum states is
valid in the case when the tensor J�� in Hamiltonian �1� has
both diagonal and off diagonal components. In the case with-
out off diagonal components there is a hidden integral of
motion. The Hamiltonian acting on a basis state with a par-
ticular Sz only changes Sz by 0, ±2, therefore Sz�mod2� is
conserved. This means that eigenfunctions can be expanded
in a basis with either even or odd Sz components. Then the
above considerations are valid separately for Sz-even and for
Sz-odd sectors. It is possible that the non-Wigner behavior
observed in Ref. �14� is due to the hidden integral of motion.

IV. TEMPERATURE, AVERAGE ENERGY
AND MAGNETIC SUSCEPTIBILITY

The textbook analysis of a spin system based on assuming
the validity of the Boltzmann distribution gives the Curie law
and the average energy �18�

 =
n

4T
, E�T� = Ēi −

1

T
�Ei

2 − Ēi
2� . �4�

Here  is the magnetic susceptibility, E�T� is the average
energy at a given temperature �we set the Boltzmann con-

stant equal to unity�, Ēi is the average energy of stationary

states, and Ei
2 is the average energy squared. Ēi and Ei

2 are
independent of temperature. First we want to check the va-
lidity of Eq. �4� for the isolated dynamical system �1�. In this
case, Eq. �4� in essence defines an effective temperature, see
the discussion in Ref. �11�. To give a precise meaning to Eq.
�4� one has to consider many energy levels inside a bin
around some given energy E. Then, according to Eq. �4� the
susceptibility averaged over these levels is related to the en-
ergy E. We have checked numerically that for the Hamil-

tonian �1� Ēi�0 and Ei
2�0.13J2n. Hence, according to Eq.

�4� �−1.94E /J2. This agrees well with results of numerical
simulations with Hamiltonian �1� shown in Fig. 2.

This figure represents values of the level magnetization
�i	Sz	i� calculated in the field B=0.1J, averaged over bins of
width 
E=0.5J, and averaged over random J��. Deviation
from linear dependence at large positive and negative energy
is the finite size effect: Eqs. �4� make sense only if the

average energy is smaller than the “band width” 	E	��nJ.
It is instructive to consider instead of “rectangular bin-

ning” another way of sampling of energy levels. In particular
the Boltzmann sampling defined as M = 1

Z�i�i	Sz	i�e−Ei/T,
where Z=�ie

−Ei/T. Let us stress that temperature here is just a
parameter that samples a set of energy levels around the
average energy that according to Eq. �4� is E=−0.13nJ2 /T.
One can also check that the energy “window” around the
average energy is �Er.m.s.=�0.13nJ. Note that the Boltzmann
sampling does not imply a validity of the equilibrium Bolt-
zmann distribution. For example we can use Boltzmann sam-
pling in a system without interaction that never comes to an
equilibrium. The value of TM /B calculated for different
cluster sizes, temperatures �positive and negative�, and mag-
netic fields and averaged over random J�� is presented in
Fig. 3.

For high temperatures 	T	=3J, the results agree perfectly
with the Curie law. Unexceptedly it agrees even at B�Bc1.
For lower temperatures, 	T	�J the results deviate from the
Curie law as one should expect. To complete the analysis we
have also calculated the dispersion of the susceptibility and
found that �=��2�− ��2�0.01�n /T.

V. MAGNETIC SUSCEPTIBILITY AT NONZERO
FREQUENCY, FLUCTUATIONS

There are no temporal fluctuations in an isolated system
in a given quantum state. The fluctuations come from the fact
that a large system cannot be prepared in a fixed quantum
state. We always deal with a density matrix that represents a
combination of a large number of quantum states around
some average energy. In this section we consider only the
Boltzmann sampling: the average energy is E=−0.13nJ2 /T
and the energy “window” is �Er.m.s.=�0.13nJ. In this case we
can use the standard formula for the imaginary part of the
magnetic susceptibility �18�

Im����� =
�

�
�1 − e−��/T�

1

Z
�
i,j

e−Ei/T	�i	Sz	j�	2��� + �ij� . �5�

Here �ij = �Ei−Ej� /�. First we perform direct numerical
simulations using this formula and quantum states generated
by the Hamiltonian �1� at B=0.1J �19�. For simplicity, we
consider the case when the tensor J�� has only diagonal

FIG. 2. Magnetization �i	Sz	i� averaged over energy bins

E=0.5J. The magnetic field B=0.1J. Solid, dashed, and dotted
lines correspond to clusters of size n=8,10,12, respectively.

FIG. 3. The value TM /B versus magnetic field for temperatures
T=−3J �solid�, −J �dashed�, J �chain�, 3J �dotted� and for cluster
sizes n=8,12. The lower group of lines correspond to n=8 and the
upper group to n=12.
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components. Results of simulations for cluster n=12 are
shown in Fig. 4. The plots for n=8,10 are very similar. The
result unambiguously indicates a Gaussian line shape,
Im��� n

4T
����e−�2�2

, with ��0.85/J. Assuming the
Gaussian shape we can also calculate � analytically using a
method usually applied in NMR studies �20�. At a large tem-
perature, Ei�T, and hence we can represent Eq. �5� as
Im�����= ��

T f��� where the line shape f��� is given by
f���=�i,j	�i	Sz	j�	2���+�ij�. Let us calculate the second mo-
ment of f���, M2=
−�

� �2f���d�
−�
� f���d�. Using the com-

pleteness relation and the spin decoupling Sz
2=�klSzkSzl

→1/4�kl�kl �the indexes k, l enumerate sites� we find the
denominator 
−�

� f���d�=n2n−2. To calculate the numerator
one represents it in terms of the commutator of spin with the
Hamiltonian 
−�

� �2f���d�=�i�i	�H ,Sz�2	i�. Then calculating
the commutator and using the spin decoupling we find


−�

�

�2f���d� =
2n

12�
�kl�

��Jxx
2 + Jyy

2 + Jzz
2 � − �JxxJyy + JyyJzz

+ JxxJzz� + 3�Jxy
2 + Jzy

2 + Jxz
2 �� . �6�

Here �kl� represents a pair of nearest sites. Since we have
performed numerical simulations without off diagonal com-
ponents of J��, the right hand side of Eq. �6� is n2n−1J2 /3
and hence M2=2/3J2. On the other hand for the Gaussian
line shape M2=1/ �2�2�. Hence the analytical calculation
gives �=�3/4 /J. The Gaussian curve with this value of the
relaxation time is shown in Fig. 4 by solid line. It is in good
agreement with results of direct numerical simulations. The
real part of the susceptibility can be easily found using
Kramers-Kronig relations �see, for example, Ref. �18��

As soon as Im�� is known then using the fluctuation
dissipation theorem one can find magnetic noise, i.e.,
the spectral density �M2�� of the square of the devia-
tion of the magnetization from its average value �9�,

V2�M2��=� coth��� /2T�Im�����. V is volume of the
sample. A very interesting point is that at ��T the noise is
independent of temperature and moreover it is the same for
positive and negative temperature. What is usually called the
fluctuation dissipation theorem in the case of negative tem-
perature becomes the fluctuation radiation theorem because
Im����� changes sign.

We have investigated the structure of chaotic quantum
states in a spin lattice system with random interactions. We
also checked the validity of the Curie law for magnetic sus-
ceptibility and find the spectrum of magnetic noise. The tem-
perature independent noise limits the statistical sensitivity of
experiments on parity and time-reversal-invariance viola-
tions. Our calculations confirm the validity of estimates of
sensitivity of EDM experiments presented in Ref. �9�.
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